
Source Code Documentation: a Tool Focused on Business Requirements

Humberto Ferreira da Luz Junior
Departamento de Computação

Universidade Estadual de Londrina
Londrina, Brazil

hfluz@uel.br

Rodolfo Miranda de Barros
Departamento de Computação

Universidade Estadual de Londrina
Londrina, Brazil
rodolfo@uel.br

Abstract—Aiming to fill a gap in traditional methods of
source code documentation, which focus mainly on the API
documentation for other programmers, this article presents
a new approach for business requirements, mapping them
through a set of annotations. These annotations, in turn,
are interpreted by the GaiaDoc tool, which is specified in
this paper and is able to generate documentation in form
of use case specifications in a language and format easily
understandable by the project stakeholders. A case study of
the proposed methodology’s application is presented before the
final considerations.

Keywords-Source code documentation; requirements engi-
neering; javadoc; documentation generator;

I. I NTRODUCTION

The source code documentation (SCD) is considered one
of the best practices for any programming language. It allows
other developers to learn to use the code without the need
to analyze hundreds or even thousands of lines of complex
algorithms and it ensures that the knowledge of its rules does
not get stored only in people.

Almost all practices for this type of documentation focus
on API (Application Programming Interface) users, i.e.,
other programmers, who generally adopt an overly technical
language, and often simply describe an algorithm that should
be readable only by its own code.

In RUP (Rational Unified Process), the business rules
of software projects are specified primarily as functional
requisites in the use case model, that represents interactions
between the actors and the system, and the detailed descrip-
tions of each of these use cases, which are defined as use
case specifications (UCS) [5].

The problem lies in the fact that the specifications for code
documentation, as well as their tools, were created especially
for API documentation, leading programmers to document
incorrectly the classes which implement business rules.

A clear example of classes that implement business rules
resides in the controller layer of the Model-View-Controller
(MVC) architecture, a standard architectural design develo-
ped which proposes that business rules should be decoupled
from the vision and the application domain and is therefore
a three-tier architecture [2]. Accordingly is quite possible to

link the controller layer classes to the use cases of Unified
Modeling Language (UML).

It is also trivial to find cases where there is little integrity
and traceability between the business rule documentation,
the SCD and the implementation itself. This occurs because
the requirements are frequently changed, making the source
code updated, and for lack of time, the respective require-
ments documented in the UCS come to be neglected [3].

Consequently, the current version of the implementation
is rarely equivalent to the documentation, since it demands
too much effort to keep it up to date. To address this issue,
several tools have emerged to concentrate the documentation
in the source code and export it to other formats which are
more accessible to their readers.

Considering the above problems, it is proposed in this
paper a new approach for code documentation focusing only
on the business rules. This approach is given by its own set
of annotations mapped to UCSs and is available through
a language and format easily understandable to the project
stakeholders.

This paper also presents GaiaDoc tool, responsible for
mapping the annotations in the UCS, and some advantages
by storing the documentation in the source code. Among the
advantages, there is the versioning, which can be accom-
plished through a configuration management system such as
Subversion or GIT, and the bug tracking on requirements,
which can be obtained by bug tracking systems, such as
Bugzilla or JIRA.

This approach makes it possible to maintain the trace-
ability and integrity of requirements in relation to its im-
plementation, which ensures that all requirements that are
understood by the requirements analyst and approved by the
client are present in the final product, besides preventing that
unnecessary features are constructed [8].

II. M ETHODOLOGY

The main objectives of the proposed methodology are: (i)
to fill a gap in SCD methods currently used in classes that
represent the business rules and to avoid those requirements
duplication among the project’s artifacts, resulting in less
effort to maintenance; and (ii) greater traceability between

requirements, implementation and product delivered to the
customer.

Since the annotations present in the source code require
well defined rules, the next step was to determine what
should be the resulting requirements document. Due to the
popularity of UML in the requirements elicitation for soft-
ware development projects, use cases and their specifications
have been estabilished as key artifacts for the proposed
approach.

Consequently, although UML is not attached to a specific
SPD, it was natural to adopt the RUP’s requirements disci-
pline, whereas this process was specifically developed using
the UML.

A. Mapping Between the SCD and the UCS

The mapping between the code documentation of classes
and the UCS is done using annotations within comment
blocks of the Java language, similar to Javadoc.

Annotations located in blocks preceded by /** and closed
by */ are analyzed by the tool, as well as by Javadoc. Any
comment block contained by /* and */ and line comments
preceded by // is ignored.

The following rules are defined for the mapping in class
scope:

1) Every class that represents business rule requirements
must contain the@nameannotation in its comment
block, indication from which use case it was mapped;

2) Whenever a use case is mapped to more than one class,
one must contain the@mainannotation;

3) The annotation@descriptionis required when the use
case is mapped to only one class. If the use case
is mapped to different classes, at least one of them
must contain this annotation, and if more than one
class have the description, then the one which class is
annotated with@mainwill be adopted in the resulting
UCS;

4) The@writer and@performerannotations are manda-
tory and can be repeated several times, if the documen-
tation is written for more than one person or there is
more than one actor in the use case;

5) In the class scope there is also the annotations@ex-
tension, which represents an extension of the use case,
and@specialRequirement, that represents the use case
special requirements;

6) In the case of the@writer, @performer, @extension
and @specialRequirementannotations, when the use
case is mapped in several classes, these properties are
merged.

The figure 1 shows the model of documentation in class
scope.

The class attributes, together with their description, are
used to generate the Glossary, which is a dictionary of terms
related to the use case in form of a table. The following rules
are adopted for this scope:

Figure 1. Model of documentation in the class comment block.

1) Only the@descriptionannotation is allowed. In case
this annotation is not present, the attribute is ignored
during the generation of the UCS;

2) The attribute name is obtained from the variable name
to which belongs its comment block.

The model of documentation in the attribute scope is
exemplified by the figure 2.

Figure 2. Model of documentation in the attribute comment block.

The class methods represent the event streams of the use
case. An event stream can be divided into different classes,
provided that all belong to the same use case. The rules for
its comment block are listed below:

1) The method comment block should contain the anno-
tation @description, which cannot be repeated in the
same block;

2) By default it is considered that the event actor is the
one defined by the@performerannotation in the class
scope. If the same annotation is present in the scope
of the method, this value will be overwritten;

3) If the event has pre or post-conditions, the annotations
@preCondition and @postCondition can be used as
many times as necessary;

4) It is mandatory in the method scope that the@ba-
sicFlow or @alternativeFlowannotation be present.
However both cannot be used together;

5) The annotation@alternativeFlowhas a parameter in-
dication to which alternative event stream the method
belongs.

According to the delimitations specified above, the model
for method documentation is shown in the figure 3.

Figure 3. Model of documentation in the method comment block.

After reading the annotations in the file that contains the
class, GaiaDoc converts these data into the class structure
shown in figure 4.

Figure 4. Class diagram of the structure that represents thedata read from the Java file by the GaiaDoc tool

The objects of the classAnnotationcontain the data for
each annotation individually, as its name, its content and its
parameters, if applicable. Furthermore it provides methods
that help to identify its scope and also in checking its
validity.

The Classstores a set of properties relative to the class
scope, which are in fact objects of type annotation, which
belong to its scope. It also has a set of methods and
attributes. Each element of the set of methods is an object of
type Method that stores the properties related to its scope.
The same occurs with the set of objects of typeAttribute
that contains the annotations associated with the attribute.

B. The GaiaDoc Tool

The GaiaDoc tool was designed to be executed via
command line, taking two parameters: the first is the root
directory that contains all classes to be analyzed and the
second is the output directory, which is where the UCSs
generated from the class annotations.

There are also optional parameters to remove specific
parts of the UCS such as, for example, the glossary. In the
case you should add the –r glossary parameter.

The PDF was chosen as the output format in order
to hinder the changes made in the generated document,
encouraging the changes directly in the source code.

By the time the command is executed, the tool traverses
all the files in the given directory, including those in its
subdirectories. Each found class is parsed to determine
whether it contains all the required annotations and, if so,
the documentation is obtained from the file and it is used to
generate the UCS.

During the execution of the parsing, the annotations are
located in the comment blocks and classified as tokens by
the parser. The reading of the file that contains the class
must occur in the sequence outlined by the state diagram
shown in figure 5.

If the parser does not follow the provided flow by the
states diagram, the documentation is considered invalid and

the UCS is not generated for the class.
When changes occur in the requirements documentation

in the source code, you need only re-execute the command
to overwrite the generated specifications.

C. Requirements Flow

Despite the use case modeling does not limit the choice
of the Software Development Process (SDP), it is often used
in conjunction with RUP, which is interactive, incremental
and oriented to planning and risks, and focused on the
architecture of the system to be developed [1].

The adoption of this approach requires some changes in
RUP’s default requirements pattern, which is handled by the
Requirements Discipline.

The first artifact generated by this discipline is the vision
document, which sets out what is the problem to be solved
by the software system, what is the delimitation of the scope,
as well as who are the people interested in the project.

The requirements are then identified through interviews
with stakeholders and classified into functional, that are
specified by use cases, and non-functional, which are docu-
mented as a supplementary specification.

Following the traditional modeling of the RUP, the func-
tional requirements, represented by UCS in a language
understandable to all stakeholders in the project, are refined.
This specification is usually available in text format docu-
ment, including the description of the use case, the list of
actors who participate in it and the basic and alternative flow
of events.

Although not in the RUP scope, subsequently much of
the already documented requirements are duplicated in the
SCD, increasing the effort to keep both updated with the
latest version of the code.

For this reason, the approach of the proposed methodo-
logy in this paper differs from the traditional one recom-
mended by RUP after the definition of the use case diagram.
Following the identification of use cases, a preliminary class

Figure 5. State diagram of the GaiaDoc parser.

diagram is defined and then a skeleton project is created,
without their specification in text documents.

The skeleton of the project includes the specified class in
the class diagram, its attributes and methods, as well as the
documentation suggested by this article.

The act of creating the skeleton of the project improves the
understanding of project requirements by the analysts, and
as a consequence, the class diagram and other UML artifacts
are refined. These improvements are propagated back to the
skeleton and the class diagram, generating, consequently,a
continuous improvement process.

After the implementation of the skeleton of the project, the
classes are ready to be documented by the requirements ana-
lyst through the use of the previously described annotations.
When the documentation is finished, specifications are then
generated in PDF format and distributed to stakeholders.

At the start of system’s implementation, most of the
requirements are already documented in the source code.
Throughout the development of the project, the requirements
are iteratively refined, modified and enhanced, since changes
have been approved by the change management committee.
As a consequence, all artifacts can be modified, including
the use cases, the class diagram, the UCSs located in the
source code and even the code itself.

The fixes of bugs (failures) identified in the documentation
can be registered in a bug tracking system and attached to
a specific version of the UCS through versioning, helping
to keep track of changes in documented requirements and
also defining the priorities of these modifications in relation
to corrections made in the source code itself. Thus, a
centralized repository of all changes made in both the code
and documentation is maintained.

Nowadays versioning is almost always applied to source
code and bug tracking systems are aways present in soft-
ware development projects, accordingly the addition of this
resource to requirements management would represent little
to no cost for the organization.

The result of the described practices is a code very well
documented, updated and in line with the other project
artifacts.

Although RUP does not address the SCD in real projects,
it is common that the documentation requirements are du-
plicated, even in different languages and levels of depth, and
therefore the update of requirements becomes more costly
to the organization.

If the organization chooses to document an artifact over
another, with the aim of reducing costs, the integrity of the
artifacts is broken.

In the proposed method, the cost of updating the artifacts
that contain the requirements of the project is reduced, since
the specification of functional requirements is concentrated
in one place. The requirements analyst updates the docu-
mentation located in the source code and uses the GaiaDoc
tool to regenerate the specification of use case in its updated
version.

The disadvantage of this approach, as well as various
other techniques of software engineering, is that the duration
of the phases of analysis and planning becomes larger.
Nevertheless, it is expected that the duration of subsequent
phases is considerably reduced, generating a positive cost-
benefit for the project.

1) Traceability of Requirements:According to Lam-
sweerde [7] the overall objective of traceability management
is to support consistency maintenance in the presence of
changes, by ensuring that the impact of changes is easily
localizable for change assessment and propagation.

Revisions result from evolution over time to improve
or correct the document and should contain the date of
modification, their author, their contributors and the reason
of the change. In relation to the proposed approach, the
contributors and the reason of the change can be managed by
a bug tracking system (adapted to be used a a requirement
tracking system). All other informations related to a new
UCS version are easily managed by a versioning tool as
mentioned before.

Besides the versioning management of the requirements
documents, the dependency between the requirements con-
tained in each artifact should be tracked. In the scope of this
paper a vertical traceability link can be found between: (i)
the class diagram and the project skeleton; (ii) the use case

diagram and the UCS; and (iii) the UCS and the source
code. A horizontal traceability link can be found between
the project skeleton and the UCS.

The advantage of this proposal is that the traceability
between those artifacts can be easily identified, what is very
important considering that specially in the beginning of the
specification many changes might be made in the project
skeleton while the requirements are being better understood.

2) Relationship between the documentation writer and
the developer: Some rules must be established in the
relationship between the programmer and writer of the
documentation - usually, the requirements analyst.

The developer can and should make simple comments
(preceded by //), which are not mapped by the documen-
tation generator tools, while the writer can freely edit the
documentation located in the source code, which is used
to generate the UCSs, however, he should not, under any
circumstances, modify the code itself.

As for the documentation of classes mapped by Javadoc,
which is used by other developers as an API, it consists
of a strategic decision of the organization if the docu-
mentation should be written by the programmer or analyst
requirements. Leslie [6] recommends that in cases where the
requirements are technical, the developer should be allowed
to write comments, however, the requirements analyst can
also edit and complement them.

Developers can and should review the documentation
written by the requirements analyst, however they should
propose changes through a change management system,
such as a bug tracking system, which fits perfectly to the
situation, considering that the documentation is present in
the code source. Approved changes are, then, made by the
requirements analyst.

III. R ELATED WORKS

Related works that address the automated generation of
business requirement documents from source code could not
be found. The closest approach was related to tools that get
the non-business requirements from source code to generate
API documentation for software developers, like Javadoc.

IV. CASE STUDY

The case study was applied to the project of the Dental
Clinic Management System of the Londrina State University,
developed by the Department of Computer Science at the
same university between the years of 2009 and 2011.

The project team consisted of four undergraduate stu-
dents, two MSc students and two teachers who worked in
project management. The adopted process was RUP and
the standard code documentation chosen was Javadoc. Yet
no standard onhow the requirements should be written or
validated have been set.

The project was implemented in the J2EE architecture,
following the MVC pattern. We identified 12 core classes

that implement the business rule and through their analysis
was possible to note differences in the level of detail of each
class comments:

• Very well commented (on average 3-5 comment lines
per method): 4 classes;

• Commented (on average 1-2 comment lines per
method): 6 classes;

• Not commented: 2 classes.

It was observed that the simpler the business rule imple-
mented, the less likely the class contained documentation
describing the class itself and its methods. When the com-
plexity increased, the average number of lines of comment
per method is proportionally raised.

Following, the documentation contained in the source
code was compared with the UCS, seeking overlapping of
requirements, which leads to a greater effort to mainte-
nance and higher probability of requirements inconsistency.
Classes commented in more details were those which had
more duplicate requirements in relation to its respective
UCS. Classes with few comments contained little or no
overlap, but it was identified that in many cases only
the documentation of the source code was not enough to
understand their business rules without examining the source
code itself or the UCS document.

Subsequently the identified use cases and business rule
classes of the project were correlated. Only one use case
was mapped into two classes, each of all the others have
been mapped in only one class.

The classes were re-documented following the GaiaDoc
approach taking care to keep all information contained in
the UCS. The figure 6 shows the class AppointmentReg-
ister documented and figure 7 presents its respective UCS
generated by the GaiaDoc tool.

Since GaiaDoc in its current version does not support the
addition of pictures, use case diagrams contained within the
UCSs could not be included in the version generated by the
tool. So this was the only missing information identified in
the re-documentation of the classes.

Whereas GaiaDoc was applied to a project already in
place, the study was concerned only in verifying the effi-
ciency of the proposal related to requirements duplication
in the source code and UCS, as well in the assurance that
the requirements are consistent with the project artifacts.

The next step consists in the application of GaiaDoc
in a project since its inception and the validation of the
requirements process proposed in this work, as well as to
analyze the relationship between the requirements analyst
and developer in a practical way.

V. CONCLUSION

It was suggested a new perspective on the RUP’s require-
ments flow through the use of a new tool that generates the
UCS in an automated way, from the SCD using annotations.

Figure 6. Source code documentation of the AttendanceRegister class.

Figure 7. Attendance Register use case specification.

Among the major contributions expected by the GaiaDoc
tool are: (i) less effort in maintaining the documentation of
functional requirements focused on the business rules; (ii) a
better control on the changes applied to these requirements;
(iii) a greater ability to track changes of requirements and
link them to other artifacts like class diagram and source
code; and (iv) greater consistency and integrity among the
artifacts that document the requirements and the implemen-
tation.

Currently only the Java classes are supported by GaiaDoc,
however, we study the support of other object-oriented
languages in a extensible way. The goal is to enable, by
means of a simple file configuration with the syntactical
features of the language in question, add its support to the
tool.

In the future, it’ll be possible to use the GaiaDoc API to
create plugins for widely used Integrated Development En-
vironments (IDEs) as, for example, Netbeans and/or Eclipse.

The objective of this study was not to propose a tool that
replaces the traditional ones directed to API documentation,
but to provide an alternative that may better suit the needs
of the project in certain cases.

In the case of the Java language, the ideal is to use
both tools (Javadoc and GaiaDoc) in the project, taking one
over another (or the combination of both), according to the
objective of the implemented class.

REFERENCES

[1] Werner Heijstek and Michel Chaudron. Evaluating RUP
software development processes through visualization of effort
distribution. In Proceedings of the 2008 34th Euromicro
Conference Software Engineering and Advanced Applications,
SEAA ’08, pages 266–273, Washington, DC, USA, 2008. IEEE
Computer Society.

[2] Mark Douglas Jacyntho, Daniel Schwabe, and Gustavo Rossi.
A software architecture for structuring complex web applica-
tions. J. Web Eng., 1(1):37–60, October 2002.

[3] Joseph R. Kiniry and Fintan Fairmichael. Ensuring consistency
between designs, documentation, formal specifications, and
implementations. InProceedings of the 12th International
Symposium on Component-Based Software Engineering, CBSE
’09, pages 242–261, Berlin, Heidelberg, 2009. Springer-Verlag.

[4] Douglas Kramer. API documentation from source code com-
ments: a case study of Javadoc. InProceedings of the 17th
annual international conference on Computer documentation,
SIGDOC ’99, pages 147–153, New York, NY, USA, 1999.
ACM.

[5] Philippe Kruchten.The Rational Unified Process: An Introduc-
tion. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 3 edition, 2003.

[6] Donald M. Leslie. Using Javadoc and XML to produce
API reference documentation. InProceedings of the 20th
annual international conference on Computer documentation,
SIGDOC ’02, pages 104–109, New York, NY, USA, 2002.
ACM.

[7] Axel van Lamsweerde. Requirements Engineering - From
System Goals to UML Models to Software Specifications.
Wiley, 2009.

[8] Simon Wright. Requirements traceability - what? why? and
how? In In Proceedings of the Colloquium by the Institution
of Electrical Engineers Professional Group C1 (Software En-
gineering), pages 1–2, London, UK, 1991.

